Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Environ Int ; 172: 107765, 2023 02.
Article in English | MEDLINE | ID: covidwho-2242639

ABSTRACT

The potential utility of wastewater-based epidemiology as an early warning tool has been explored widely across the globe during the current COVID-19 pandemic. Methods to detect the presence of SARS-CoV-2 RNA in wastewater were developed early in the pandemic, and extensive work has been conducted to evaluate the relationship between viral concentration and COVID-19 case numbers at the catchment areas of sewage treatment works (STWs) over time. However, no attempt has been made to develop a model that predicts wastewater concentration at fine spatio-temporal resolutions covering an entire country, a necessary step towards using wastewater monitoring for the early detection of local outbreaks. We consider weekly averages of flow-normalised viral concentration, reported as the number of SARS-CoV-2N1 gene copies per litre (gc/L) of wastewater available at 303 STWs over the period between 1 June 2021 and 30 March 2022. We specify a spatially continuous statistical model that quantifies the relationship between weekly viral concentration and a collection of covariates covering socio-demographics, land cover and virus associated genomic characteristics at STW catchment areas while accounting for spatial and temporal correlation. We evaluate the model's predictive performance at the catchment level through 10-fold cross-validation. We predict the weekly viral concentration at the population-weighted centroid of the 32,844 lower super output areas (LSOAs) in England, then aggregate these LSOA predictions to the Lower Tier Local Authority level (LTLA), a geography that is more relevant to public health policy-making. We also use the model outputs to quantify the probability of local changes of direction (increases or decreases) in viral concentration over short periods (e.g. two consecutive weeks). The proposed statistical framework can predict SARS-CoV-2 viral concentration in wastewater at high spatio-temporal resolution across England. Additionally, the probabilistic quantification of local changes can be used as an early warning tool for public health surveillance.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , RNA, Viral , Wastewater
2.
Pattern Recognit ; 118: 108005, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1220999

ABSTRACT

Computer-aided diagnosis has been extensively investigated for more rapid and accurate screening during the outbreak of COVID-19 epidemic. However, the challenge remains to distinguish COVID-19 in the complex scenario of multi-type pneumonia classification and improve the overall diagnostic performance. In this paper, we propose a novel periphery-aware COVID-19 diagnosis approach with contrastive representation enhancement to identify COVID-19 from influenza-A (H1N1) viral pneumonia, community acquired pneumonia (CAP), and healthy subjects using chest CT images. Our key contributions include: 1) an unsupervised Periphery-aware Spatial Prediction (PSP) task which is designed to introduce important spatial patterns into deep networks; 2) an adaptive Contrastive Representation Enhancement (CRE) mechanism which can effectively capture the intra-class similarity and inter-class difference of various types of pneumonia. We integrate PSP and CRE to obtain the representations which are highly discriminative in COVID-19 screening. We evaluate our approach comprehensively on our constructed large-scale dataset and two public datasets. Extensive experiments on both volume-level and slice-level CT images demonstrate the effectiveness of our proposed approach with PSP and CRE for COVID-19 diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL